

Thermodynamics of Energy Conversion

Prof. Dr. Andreas ZÜTTEL

Assistant: Yasemen Kuddusi

EXERCISES 4

1) Calculate the temperature increase for nitrogen compressed from 0.5 to 50 bar, when the initial temperature is -50°C.

$$p/p_0 = (T/T_0)^{(c_v/R+1)}$$

$$100 = (T/T_0)^{(3.5)}$$

$$T/T_0 = 3.7 \text{ i.e. } T = 3.7 \cdot 223 \text{ K} = 831 \text{ K} = 558^\circ\text{C}$$

2) What assumptions make it impossible to build a Carnot engine?

The calculation is time independent, i.e. infinitely slow process. Isotherms and adiabats can not be realized.

3) Calculate the Carnot efficiency and the “real” efficiency for an engine working between 600°C and 200°C ?

$$\text{Efficiency Carnot engine} = \Delta T/T_h = 400 \text{ K} / 873.15 \text{ K} = 45.8\%$$

$$\text{Efficiency of "real" Carnot engine} = 1 - \sqrt{T_c/T_h} = 1 - \sqrt{473.15 \text{ K} / 873.15 \text{ K}} = 26.3\%$$

4) Calculate the efficiency for a steam engine with a max. pressure of 8 bar and 50 bar.

$$\Delta H_{vap} (100^\circ\text{C}) = 40.63 \text{ kJ/mol}, \Delta S_{vap} (100^\circ\text{C}) = 0.109 \text{ kJ/mol}$$

p = 8 bar corresponds to T₁ = 442 K, T₂ = 373 K;

idea Carnot efficiency = 15.6%; real Carnot efficiency = 8.1%;

p = 50 bar corresponds to T₁ = 530 K, T₂ = 373 K;

idea Carnot efficiency = 29.6%; real Carnot efficiency = 16.1%

Rankine cycle:

p = 8 bar corresponds to T = 442 K, T₀ = 373 K; ΔS(T) = 6.663 - 2.046 = 4.617 J/(mol·K), ΔS(T₀) = 7.359 - 1.303 = 6.056 J/(mol·K)

ΔS₀/ΔS ≈ 1.3, efficiency = 68K·2.3/(442K·2.3+373K·0.3) = 13.8%

p = 50 bar corresponds to T₁ = 530 K, T₂ = 373 K; ΔS(T) = 5.973 - 2.920 = 3.050 J/(mol·K)

ΔS₀/ΔS ≈ 2, efficiency = 157K·3/(530K·3+373K·1) = 24%.

5) Show that Antoine's equation is equal to the pressure calculated by the Gibb's free energy.

Antoine equation: p[mmHg] = exp(20.386 - 5132/T[K])

p[Pa]/101325 = 1/760 · exp(20.386 - 5132/T[K])

ln(p[Pa]/101325) = -ln(760) + 20.386 - 5132/T[K]

ln(p[Pa]/101325) = 13.7 - 5132/T[K]